Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
JMIR Serious Games ; 10(2): e36707, 2022 May 27.
Article in English | MEDLINE | ID: covidwho-1869313

ABSTRACT

BACKGROUND: It is essential that nurses quickly learn the proper methods for preventing and controlling nosocomial infection and managing intensive care patients during the COVID-19 pandemic, including the donning and doffing of personal protective equipment (PPE). Virtual reality (VR) simulation offers the advantage of learning in a safe environment with a sense of realism similar to that of an actual clinical setting and has been reported to enhance self-efficacy in infection control, safety performance, and learning satisfaction among students. OBJECTIVE: This study aims to develop a virtual reality infection control simulation (VRICS) program regarding donning and doffing of PPE and respiratory care for pediatric patients admitted to an isolation unit for COVID-19 and to identify the effects of the program on PPE knowledge, infection control performance, and self-efficacy for nursing students. Additionally, the realism of the VRICS program and the students' level of satisfaction with the program were assessed. METHODS: This was a quasi-experimental study based on a controlled pretest-posttest design. Third- and fourth-year nursing students were divided into an experimental group (n=25) who participated in a VRICS program and a control group (n=25) with no participation. Data were collected from November 13 to December 10, 2021, and analyzed using descriptive statistics and the t test, paired t test, Mann-Whitney U test, and Wilcoxon matched-pair signed-rank test. The VRICS program consisted of a prebriefing, including direct practice of donning and doffing PPE, VR simulation, and debriefing. The VR simulation comprised 3 sessions: donning and inspection of PPE in the dressing room before entering the negative-pressure isolation unit; assessing for suction care, nasopharyngeal suctioning, and checking of COVID-19 patients in the negative-pressure isolation unit; and doffing PPE in the dressing room. The total execution time for the program was 180 min. RESULTS: Compared with the control group, the experimental group showed significantly greater improvements in PPE knowledge (z=-3.28, P<.001), infection control performance (t48=4.89, P<.001), and self-efficacy (t36.2=4.93, P<.001). The experimental group's mean scores for realistic immersion and learner satisfaction were 4.49 (SD 0.50) points and 4.75 (SD 0.38) points (on a 5-point Likert scale), respectively. CONCLUSIONS: The VR simulation training program involving pediatric COVID-19 patients combined skills training effectively and enhanced theoretical knowledge, respiratory care skills, and infectious disease preparedness. Thus, it could be applied to training nurses to respond more effectively to public health situations involving infectious diseases, including the COVID-19 pandemic.

2.
Emerg Microbes Infect ; 11(1): 1058-1071, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1752040

ABSTRACT

Safe, efficacious, and deployable vaccines are urgently needed to control COVID-19 in the large-scale vaccination campaigns. We report here the preclinical studies of an approved protein subunit vaccine against COVID-19, ZF2001, which contains tandem-repeat dimeric receptor-binding domain (RBD) protein with alum-based adjuvant. We assessed vaccine immunogenicity and efficacy in both mice and non-human primates (NHPs). ZF2001 induced high levels of RBD-binding and SARS-CoV-2 neutralizing antibody in both mice and non-human primates, and elicited balanced TH1/TH2 cellular responses in NHPs. Two doses of ZF2001 protected Ad-hACE2-transduced mice against SARS-CoV-2 infection, as detected by reduced viral RNA and relieved lung injuries. In NHPs, vaccination of either 25 µg or 50 µg ZF2001 prevented infection with SARS-CoV-2 in lung, trachea, and bronchi, with milder lung lesions. No evidence of disease enhancement was observed in both animal models. ZF2001 has been approved for emergency use in China, Uzbekistan, Indonesia, and Columbia. The high safety, immunogenicity, and protection efficacy in both mice and NHPs found in this preclinical study was consistent with the results in human clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Carrier Proteins , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit
3.
Front Med (Lausanne) ; 8: 722219, 2021.
Article in English | MEDLINE | ID: covidwho-1518491

ABSTRACT

The tolerance of certain multi-drug resistant bacteria to disinfectants may be promoted while the requirements of environmental disinfection have been raised in the high-risk areas of medical institutions during the COVID-19 pandemic. The current research addressed the mechanisms underlying a sharp increase in the detection of methicillin-resistant Staphylococcus aureus (MRSA) observed in a closed-management unit of elderly patients with mental disorders in 2020 as compared with the previous 4 years. We first conducted microbial detection in staff-hand and environment and a molecular epidemiology analysis, rejecting the hypothesis that the MRSA increase was due to an outbreak. Afterward, we turned to disinfectant concentration and frequency of use and analyzed the varied MRSA detection rates with different concentrations and frequencies of disinfection in 2020 and the previous 4 years. The MRSA detection rate increased with elevated concentration and frequency of disinfection, with 1,000 or 500 mg/L two times per day since January in 2020 vs. 500 mg/L 2-3 times per week in 2016-2019. When the disinfectant concentration was reduced from 1,000 to 500 mg/L, the MRSA detection decreased which indicated a modulatory role of disinfectant concentration. With a sustained frequency of disinfection in 2020, the MRSA detection rate was still higher, even after May, than that in the previous years. This suggested that the frequency of disinfection also contributed to the MRSA increase. Overall, the MRSA detection was augmented with the increase in disinfection concentration and frequency during the COVID-19 epidemic, suggesting that highly-concentrated and highly-frequent preventive long-term disinfection is not recommended without risk assessments in psychiatric hospitals.

5.
Front Med (Lausanne) ; 7: 356, 2020.
Article in English | MEDLINE | ID: covidwho-689148

ABSTRACT

Faced with the rapid spread of the novel coronavirus disease (COVID-19), a global public health threat, psychiatric hospitals are under huge pressure to prevent and control nosocomial infection. The current research analyzed the COVID-19 infection control practices in a regional mental health center in China and addressed how this type of medical institutions could enhance their ability to prevent and control hospital transmission of major respiratory diseases and general management of nosocomial infection risks. Firstly, hospital-related risks of COVID-19 were analyzed, and targeted prevention and control measures were then established. Pre- and post-intervention theoretical knowledge of nosocomial infection control, hand hygiene compliance and accuracy, use of personal protective equipment, and disinfection and sterilization effectiveness were evaluated and compared. All the indexes displayed significant improvements following the implementation of the prevention and control measures. Up to the submission of this paper, the mental health center had obtained no suspected or confirmed case of COVID-19 infection due to hospital transmission. The findings provide empirical evidence for the effectiveness of the COVID-19 preventive strategies and have important implications for integrated and characterized infection control in mental health centers during a major epidemic. The establishment of the transitional isolation ward and air fumigation using traditional Chinese medicine for patients and staff are preventive measures worthy of further discussion and dissemination.

6.
Cell ; 182(3): 722-733.e11, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-628738

ABSTRACT

Vaccines are urgently needed to control the ongoing pandemic COVID-19 and previously emerging MERS/SARS caused by coronavirus (CoV) infections. The CoV spike receptor-binding domain (RBD) is an attractive vaccine target but is undermined by limited immunogenicity. We describe a dimeric form of MERS-CoV RBD that overcomes this limitation. The RBD-dimer significantly increased neutralizing antibody (NAb) titers compared to conventional monomeric form and protected mice against MERS-CoV infection. Crystal structure showed RBD-dimer fully exposed dual receptor-binding motifs, the major target for NAbs. Structure-guided design further yielded a stable version of RBD-dimer as a tandem repeat single-chain (RBD-sc-dimer) which retained the vaccine potency. We generalized this strategy to design vaccines against COVID-19 and SARS, achieving 10- to 100-fold enhancement of NAb titers. RBD-sc-dimers in pilot scale production yielded high yields, supporting their scalability for further clinical development. The framework of immunogen design can be universally applied to other beta-CoV vaccines to counter emerging threats.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Severe acute respiratory syndrome-related coronavirus/immunology , Universal Design , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/chemistry , COVID-19 , COVID-19 Vaccines , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/virology , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Binding , Protein Interaction Domains and Motifs/immunology , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Sf9 Cells , Specific Pathogen-Free Organisms , Spodoptera , Transfection , Vaccination/methods , Vero Cells , Viral Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL